Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs

نویسندگان

  • Ryuhei Uehara
  • Seinosuke Toda
  • Takayuki Nagoya
چکیده

This paper deals with the graph isomorphism (GI) problem for two graph classes: chordal bipartite graphs and strongly chordal graphs. It is known that GI problem is GI complete even for some special graph classes including regular graphs, bipartite graphs, chordal graphs, comparability graphs, split graphs, and k-trees with unbounded k. On the other side, the relative complexity of the GI problem for the above classes was unknown. We prove that deciding isomorphism of the classes are GI complete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

On weighted efficient total domination

An efficiently total dominating set of a graph G is a subset of its vertices such that each vertex of G is adjacent to exactly one vertex of the subset. If there is such a subset, then G is an efficiently total dominable graph (G is etd). In this paper, we prove NP-completeness of the etd decision problem on the class of planar bipartite graphs of maximum degree 3. Furthermore, we give an effic...

متن کامل

Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone

A graph class is sandwich monotone if, for every pair of its graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊂ E2, there is an ordering e1, . . . , ek of the edges in E2 \E1 such that G = (V,E1 ∪ {e1, . . . , ei}) belongs to the class for every i between 1 and k. In this paper we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone, answering an open question by Bakon...

متن کامل

Graph Isomorphism Completeness for Perfect Graphs and Subclasses of Perfect Graphs

A problem is said to be GI-complete if it is provably as hard as graph isomorphism; that is, there is a polynomial-time Turing reduction from the graph isomorphism problem. It is known that the GI problem is GI-complete for some special graph classes including regular graphs, bipartite graphs, chordal graphs and split graphs. In this paper, we prove that deciding isomorphism of double split gra...

متن کامل

Counting the Number of Matchings in Chordal and Chordal Bipartite Graph Classes

We provide polynomial-time algorithms for counting the number of perfect matchings and the number of matchings in chain graphs, cochain graphs, and threshold graphs. These algorithms are based on newly developed subdivision schemes that we call a recursive decomposition. On the other hand, we show the #P-completeness for counting the number of perfect matchings in chordal graphs, split graphs a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2005